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Abstract

An approach for building energy-stable Galerkin reduced order models (ROMs) for linear hyperbolic or
incompletely parabolic systems of partial differential equations (PDEs) using continuous projection is de-
veloped. This method is an extension of earlier work by the authors specific to the equations of linearized
compressible inviscid flow. The key idea is to apply to the PDEs a transformation induced by the Lyapunov
function for the system, and to build the ROM in the transformed variables. For linear problems, the desired
transformation is induced by a special inner product, termed the “symmetry inner product”, which is derived
herein for several systems of physical interest. Connections are established between the proposed approach
and other stability-preserving model reduction methods, giving the paper a review flavor. More specifi-
cally, it is shown that a discrete counterpart of this inner product is a weightedL2 inner product obtained
by solving a Lyapunov equation, first proposed by Rowleyet al. and termed herein the “Lyapunov inner
product”. Comparisons between the symmetry inner product and the Lyapunov inner product are made, and
the performance of ROMs constructed using these inner products is evaluated on several benchmark test
cases.

Keywords: Reduced order model (ROM), proper orthogonal decomposition (POD)/Galerkin projection,
linear hyperbolic/incompletely parabolic systems, linear time-invariant (LTI) systems, numerical stability,
Lyapunov equation.

1. Introduction

Numerous modern-day engineering problems re-
quire the simulation of complex systems with tens
of millions or more unknowns. Despite improved
algorithms and the availability of massively par-
allel computing resources, “high-fidelity” models
are, in practice, often too computationally expen-
sive for use in a design or analysis setting. The
continuing push to incorporate into modeling ef-
forts the quantification of uncertainties, critical to
many science and engineering applications, can
present an intractable computational burden due
to the high-dimensional systems that arise. This

situation has prompted researchers to develop re-
duced order models (ROMs): models constructed
from high-fidelity simulations that retain the essen-
tial physics and dynamics of their corresponding
full order models (FOMs), but have a much lower
computational cost. Since ROMs are, by construc-
tion, small, they can enable uncertainty quantifica-
tion (UQ) as well as on-the-spot decision making
and/or control.

In order to serve as a useful predictive tool, a ROM
should possess the following properties: consis-
tency (with respect to its corresponding high-
fidelity model), stability, and convergence (to the
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solution of its corresponding high-fidelity model).
The second of these properties, namely numerical
stability, is particularly important, as it is a prereq-
uisite for studying the convergence and accuracy
of a ROM. It is well-known that popular model re-
duction approaches known as the proper orthog-
onal decomposition (POD) method [25; 26; 19]
and the balanced proper orthogonal decomposition
(BPOD) method [31; 23] lack, in general, ana
priori stability guarantee. In [30], Amsallemet
al. suggest that POD ROMs constructed for lin-
ear time-invariant (LTI) systems in descriptor form
tend to possess better numerical stability proper-
ties than POD ROMs constructed for LTI systems
in non-descriptor form. Although heuristics such
as these exist, it is in general unknowna priori
if a ROM constructed using POD or BPOD will
preserve the stability properties of the high-fidelity
system from which the model was constructed.
Theredoesexist a model reduction technique that
has a rigorous stability guarantee, namely balanced
truncation [29; 10]; however, the computational
cost of this method, which requires the computa-
tion and simultaneous diagonalization of infinite
controllability and observability Gramians, makes
balanced truncation computationally intractable for
systems of very large dimensions (i.e., systems
with more than 10,000 degrees of freedom [24]).

The importance of obtaining stable ROMs has been
recognized in recent years by a number of authors.
It is shown by Patera, Veroy and Rozza in [27; 28]
that a stable ROM can be constructed using the re-
duced basis method. In [24], Rowleyet al. show
that Galerkin projection preserves the stability of
an equilibrium point at the origin if the ROM is
constructed in an “energy-based” inner product. In
[6; 7], Baroneet al. demonstrate that a symmetry
transformation leads to a stable formulation for a
Galerkin ROM for the linearized compressible Eu-
ler equations [6; 7] with solid wall and far-field
boundary conditions. In [1], Serreet al. propose
applying the stabilizing projection developed by
Baroneet al. in [6; 7] to a skew-symmetric sys-
tem constructed by augmenting a given linear sys-
tem with its adjoint system. This approach yields a

ROM that is stable at finite time even if the solution
energy of the full-order model is growing.

The methods described above derive (a priori)
a stability-preserving model reduction framework
that is specific to a particular equation set. There
exist, in addition to these techniques, approaches
which stabilize an unstable ROM through a post-
processing (a posteriori) stabilization step applied
to an unstable algebraic ROM system. Ideally,
the stabilization is such that it will only minimally
modify the ROM. In [5], Amsallemet al. pro-
pose a method for stabilizing projection-based lin-
ear ROMs through the solution of a small-scale
convex optimization problem. In [38], a set of lin-
ear constraints for the left-projection matrix, given
the right-projection matrix, are derived by Bondet
al. to yield a projection framework that is guar-
anteed to generate a stable ROM. An approach
for stabilizing unstable ROMs for LTI systems,
termed ROM stabilization via optimization-based
eigenvalue reassignment, was proposed by Kalash-
nikova et al. in the recent work [55]. In this
approach, the unstable eigenvalues of an unstable
ROM are modified through the numerical solution
of a constrained nonlinear least-squares optimiza-
tion problem formulated such that the error in the
stabilized ROM output is minimal. In [39], a ROM
stabilization methodology that achieves improved
accuracy and stability through the use of a new set
of basis functions representing the small, energy-
dissipation scales of turbulent flows is derived by
Balajewiczet al. In [35], Zhu et al. derive some
large eddy simulation (LES) closure models for
POD ROMs for the incompressible Navier-Stokes
equations, and demonstrate numerically that the in-
clusion of these LES terms yields a ROM with in-
creased numerical stability (albeit at the sacrifice of
consistency of the ROM with respect to the direct
numerical simulation (DNS) from which the ROM
is constructed).

In this article, several approaches to building stable
ROMs for linear systems, both in the continuous as
well as in the discrete projection setting, are pre-
sented, connected and extended. The article has
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a review flavor, but contains several new contribu-
tions, most notably the following:

• The energy-stable continuous projection
ROM method developed specifically for the
equations of linearized compressible inviscid
flow in [6; 7] is extended to generic systems
of PDEs of the hyperbolic or incompletely
parabolic type.

• A stability preserving symmetry inner prod-
uct is derived for several physical systems
(the wave equation, the linearized shallow
water equations, the linearized compressible
Euler equations, the linearized compressible
Navier-Stokes equations).

• Connections between the proposed energy-
stable continuous projection method and other
model reduction techniques with ana pri-
ori stability guarantee, e.g., a discrete projec-
tion approach involving a Lyapunov equation-
based inner product introduced by Rowleyet
al. in [24], are established using the concept
of energy stability.

• Numerical studies evaluating the performance
of ROMs constructed in the energy inner
products described herein are performed.

The remainder of this paper is organized as fol-
lows. The first part consists of some preliminaries:
projection-based model reduction (in particular,
the POD1/Galerkin method) is overviewed (Sec-
tion 2), and several notions of stability (energy-
stability, Lyapunov stability, asymptotic stability,
exponential stability, time-stability) are defined
(Section 3). Attention is then turned to the con-
struction of energy-stable ROMs for linear systems
of PDEs using continuous projection (Section 4).
The energy-stability preserving model reduction

1For concreteness, it is assumed herein that the reduced ba-
sis is constructed via the POD method, as the POD is a popular
method for computing reduced bases that is feasible even for
very large systems but can give rise to unstable ROMs. It is
emphasized that the energy-stability results discussed herein
hold for anychoice of reduced basis, not just the POD basis,
however.

approach developed specifically for the equations
of linearized compressible inviscid flow in [6; 7]
is generalized. Examples of this inner product are
given for several systems of physical interest, and
some numerical results are presented. Next, it is
shown that a certain transformation applied to a
generic linear hyperbolic or incompletely parabolic
set of PDEs and induced by the Lyapunov function
for these equations will yield a Galerkin ROM that
is stable foranychoice of reduced basis. It is then
shown that, for many PDEs, the desired transfor-
mation is induced by a special weightedL2 inner
product, termed the “symmetry inner product”. It
is also demonstrated that a discrete weightedL2 in-
ner product first derived by Rowleyet al. in [24]
and termed herein the “Lyapunov inner product” is
a discrete counterpart of the symmetry inner prod-
uct. The weighting matrix that defines the Lya-
punov inner product can be computed in a black-
box fashion for a stable LTI system arising from the
discretization of a linear system of PDEs in space.
Numerical studies of POD ROMs constructed in
the Lyapunov inner product are performed. A uni-
fying summary of the energy-stability preserving
model reduction approaches described within this
paper is given Section 6, along with some conclu-
sions. It is anticipated that this discussion will aid
the reader in selecting the most appropriate model
reduction methodology for his/her application.

2. Projection-based model reduction

In this section, several approaches to building
projection-based reduced order models are re-
viewed. Attention is restricted to LTI systems.
A system is called time-invariant if the output re-
sponse for a given input does not depend on when
that input is applied [15].

At the continuous level, an LTI system can be rep-
resented by a PDE (or system of PDEs) of the form

ẋ(t) = L (x(t))+Lc(u(t)),
y(t) = Lo(x(t)),

(1)

in an open bounded domainΩ, subject to some
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boundary conditions on the boundary ofΩ, de-
noted by∂Ω, written abstractly as

Lb(x(t)) = g(t). (2)

Here,t denotes time,x ∈ R
n is called the state vec-

tor, u ∈ R
p represents the vector of control vari-

ables,y ∈ R
q is the measured signal or output, and

the ‘·’ symbol denotes differentiation with respect
to time, i.e.,ẋ ≡ ∂x

∂ t . The operatorL : R
n → R

n is
a smooth linear spatial-differential operator, i.e.,

L ≡ ∑
|ννν |≤d

Aννν(t)∂ (|ννν |)
ν1···νd

(3)

whereAννν ∈ R
n×d, ννν =

(

ν1, · · · ,νd
)

is a multi-

index, |ννν | = ∑d
i=1νi , and ∂ (i)

ν1···νi denotes theith

derivative with respect to variablesν1, ...,νi , for
i = 1, ...,d, whered ∈ N. The boundary operator
Lb : R

n → R
n is a similar smooth linear spatial-

differential operator, andg∈ R
n is a smooth func-

tion specifying the boundary data. The boundary
conditions (2) can be of the Dirichlet, Neumann or
Robin type, or a combination of these three types.
It is assumed that the boundary conditions (2) are
selected such that the resulting initial boundary
value problem ((1) with boundary conditions (2)
and an initial condition) is well-posed. The oper-
atorsLc : R

p → R
n andLo : R

n → R
q are smooth

linear mappings. The abstract operatorsL , Lb,
Lc andLo are introduced to keep the discussion as
general as possible, and used in subsequent analy-
sis.

Suppose the PDE system (1) has been discretized
in space using some numerical scheme, e.g., the
finite element method. The result will be a semi-
discrete LTI system of the form:

ẋN(t) = AxN(t)+BuP(t)
yQN(t) = CxN(t).

(4)

Here,xN ∈ R
N is the discretized state vector,uP ∈

R
P is the discretized vector of control variables,

andyQN ∈R
Q is the discretized output;A ∈ R

N×N,
B ∈ R

N×P andC ∈ R
Q×N are constant matrices (in

particular, they are not functions of timet).

The general approach to projection-based model
reduction consists of three steps, described below.

Step 1: Calculation of reduced trial and test bases,
denoted byΦΦΦM =

(

φφφ1, · · · , φφφM

)

andΨΨΨM =
(

ψψψ1, · · · , ψψψM

)

respectively, each of orderM,
with M << N.
Step 2: Approximation of the solution to (1) by

x(t) ≈
M

∑
i=1

xM,i(t)φφφ i = ΦΦΦMxM(t), (5)

wherexM,i(t) are the unknown ROM coefficients or
modal amplitudes, to be determined in solving the
ROM.
Step 3: Substitution of the approximation (5) into
the governing system ((1) or (4)) and projection of
this system onto the reduced test basis.

The result of this procedure is a “small” (size
M << N) dynamical system that, for a suitable
choice of reduced bases, accurately describes the
dynamics of the full order system for some set of
conditions. The reduced basesΦΦΦM ∈ R

N×M and
ΨΨΨM ∈ R

N×M are functions of space but not time,
and are assumed to have full column rank. In the
case thatΨΨΨM ,ΦΦΦM, the projection is referred to as
a Petrov-Galerkin projection. Otherwise, ifΨΨΨM =
ΦΦΦM, the projection is referred to as a Galerkin pro-
jection. This terminology is introduced here as it
will be shown later that the energy-stable model
reduction approaches derived in this work are ef-
fectively Petrov-Galerkin methods.

2.1. Calculation of the reduced bases (Step 1)

There exist a number of approaches for calculating
the reduced basis modes (Step 1of the model re-
duction), e.g., the POD method [25; 26; 19], the
BPOD method [31; 23], the balanced truncation
method [29; 10], the reduced basis method [27;
28]; also methods based on goal-oriented bases
[21], generalized eigenmodes [37], and Koopman
modes [40]. Attention is restricted here to the POD
basis, but it is noted that the energy-stability re-
sults derived in this paper hold forany choice of
reduced basis. The reason for the choice of the
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POD reduced basis is two-fold. First, the POD
is a widely used approach for computing efficient
bases for dynamical systems. Moreover, ROMs
constructed via the POD/Galerkin method lack in
general ana priori stability guarantee (meaning
POD/Galerkin ROMs would benefit from stability-
preserving model reduction approaches such as
those developed herein).

Discussed in detail in Lumley [16] and Holmeset
al. [19], POD is a mathematical procedure that,
given an ensemble of data and an inner product, de-
noted generically by(·, ·), constructs a basis for the
ensemble. This basis is optimal in the sense that it
describes more energy (on average) of the ensem-
ble in the chosen inner product than any other lin-
ear basis of the same dimensionM. The ensemble
{xk : k = 1, . . . ,K} is typically a set ofK instanta-
neous snapshots of a numerical solution field, taken
for K values of a parameter of interest, or atK dif-
ferent times. Mathematically, POD seeks anM-
dimensional (M << K) subspace spanned by the
set{φφφ i} such that the projection of the difference
between the ensemblexk and its projection onto the
reduced subspace is minimized on average. It is
a well-known result [6; 19; 34; 33] that the solu-
tion to the POD optimization problem reduces to
the eigenvalue problem

Rφφφ = λφφφ , (6)

whereR is a positive semi-definitematrix with its
(i, j) entry given byRi j = 1

K

(

xi ,x j
)

for 1≤ i, j ≤
K. It can be shown [19; 16] that the set ofM
eigenfunctions, or POD modes,{φφφ i : i = 1, . . . ,M}
corresponding to theM largest eigenvalues ofR is
precisely the desired basis. This is the so-called
“method of snapshots” for computing a POD basis
[25].

2.2. Approximation of solution in reduced basis
(Step 2)

Once the reduced basis is computed, the solution
x(t) is approximated as a linear combination of the
reduced basis modes (5) (Step 2). Given this ap-
proximation, the following error formula can be

shown for the POD [19; 34]:

1
K

K

∑
i=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

xi −
M

∑
j=1

(

xi ,φφφ j

)

φφφ j

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

=
J

∑
k=M+1

λk, (7)

whereJ = dim
({

x1, ...,xK
})

, and whereλ1 ≥ ...≥
λJ > 0 are the positive eigenvalues of the operator
R (6).

Typically, the size of the reduced basis is chosen
based on an energy criterion. That is,M is selected
to be the minimum integer such that

EPOD(M) ≥ tol, (8)

where 0≤ tol ≤ 1 represents the snapshot energy
represented by the POD basis, and

EPOD(M) ≡
∑M

i=1λi

∑K
i=1λi

. (9)

2.3. Projection (Step 3)

There are two approaches for performingStep 3of
the model reduction: continuous and discrete pro-
jection. These approaches are described, as well
as compared and contrasted, in the present subsec-
tion. Stability-preserving methods for constructing
ROMs using these approaches will be detailed in
Sections 4 and 5.

2.3.1. Model reduction via continuous projection

In the continuous projection approach [6; 7], the
continuous system of PDEs (1) is projected onto a
continuous representation (discussed in more detail
below) of the reduced test basis{ψψψ i}

M
i=1 ∈ R

n in
a continuous inner product(·, ·), for example, the
usualL2 inner product2

(

x(1),x(2)
)

=
∫

Ω
x(1)Tx(2)dΩ, (10)

where the xM,i(t) are the unknown ROM co-
efficients or modal amplitudes

(

so that xT
M ≡

2Weighted variants of theL2 inner product are considered
later in this work.
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(

xM,1, · · · , xM,M
))

, to be determined in solv-
ing the ROM dynamical system (derived below).

Substituting (5) into (1), the following is obtained

∑M
i=1 ẋM,i(t)φφφ i = L

(

∑M
i=1 xM,i(t)φφφ i

)

+ Lc(u(t)),
yQM(t) = Lo

(

∑M
i=1 xM,i(t)φφφ i

)

,
(11)

whereyQM(t) is the reduced approximation of the
output.

Next, a reduced test basis{ψψψ i}
M
i=1 ∈ R

n is intro-
duced, and the system of PDEs (11) is projected
onto a continuous representation of the reduced test
basis modesψψψ j for j = 1,2, ...,M in the inner prod-
uct (·, ·) to yield

∑M
i=1 ẋM,i(t)

(

ψψψ j ,φφφ i

)

=
(

ψψψ j ,L
(

∑M
i=1xM,i(t)φφφ i

)

)

+
(

ψψψ j ,Lc(u(t))
)

,

yQM(t) = Lo
(

∑M
i=1xM,i(t)φφφ i

)

,
(12)

for j = 1,2, ...,M. Typically, the reduced trial and
test basesφφφ i andψψψ i are chosen to be orthonormal
in the inner product(·, ·), so that(ψψψ j ,φφφ i) = δi j ,
whereδi j denotes the Krönecker delta function. In-
voking this property, as well as the linearity prop-
erty of the operatorsL andLo, (12) simplifies to

ẋM, j (t) = ∑M
i=1 xM,i(t)

(

ψψψ j ,L (φφφ i)
)

+
(

ψψψ j ,Lc(u(t))
)

,

yQM(t) = ∑M
i=1 xM,i(t)Lo(φφφ i),

(13)

for j = 1,2, ...,M. The equations (13) define a set
of M time-dependent ODEs for the modal ampli-
tudesxM,i(t) in (5).

Note that, since Step 1 of the model reduction (Sec-
tion 2.1) yields adiscrete–valued basisΦΦΦM, before
applying the continuous projection approach, this
basis needs to be represented using a set of contin-
uous basis functions. One way to do this is to cast
the discrete-valued POD modes as a collection of
continuous finite elements. This procedure is out-
lined here, and described in more detail in Section
4.4.1. Assume without loss of generality that the
solution of the POD eigenvalue problem (6) gives a
set of basis vectors defined at the nodes of an asso-
ciated mesh that can be broken up intonel disjoint

finite elementsΩe such that∪nel
e=1Ωe = Ω. Assume

also (without loss of generality) that the continuous
solution to (11) is scalar-valued. Letφφφ i |Ω j

e
denote

the value of theith basis function at thejth node of
elementΩe for i = 1, ...,M and j = 1, ...,nn, where
nn is the number of nodes of elementΩe. Then, the
finite element representation of the vectorφφφ i in the
elementΩe is:

φe
i =

nn

∑
j=1

Nj(x)φφφ i |Ω j
e

(14)

whereNj(x) denotes thejth finite element shape
function. Assembling the set of functionsφe

i over
the full set of elements{Ωe}

nel
e=1 gives a continu-

ous representation ofφφφ i . A similar procedure can
be applied to obtain a continuous representation of
the test basisΨΨΨM. The integrals in (13) can then be
evaluated numerically through the use of numeri-
cal quadrature. If the integrands in (13) are poly-
nomials, it is possible to select a quadrature rule to
evaluate the integrals exactly.

2.3.2. Model reduction via discrete projection

In the discrete projection approach, the FOM ODE
system (4) (the PDE system discretized in space)
is projected onto a discrete reduced test basis in a
discrete inner product. Suppose this discrete inner
product is the following weightedL2 inner product:

(

x(1)
N ,x(2)

N

)

P
= x(1)T

N Px(2)
N , (15)

whereP ∈ R
N×N is a symmetric positive-definite

matrix. LetΦΦΦM ∈ R
N×M andΨΨΨM ∈ R

N×M denote
the reduced trial and reduced test bases for (4), re-
spectively. Assume these matrices have full col-
umn rank, and are orthonormal in the inner product
(15), so thatΨΨΨT

MPΦΦΦM = IM, whereIM denotes the
M×M identity matrix. The first step in construct-
ing a ROM for (4) using discrete projection is to
approximate the solutionxN(t) by (5). Substituting
(5) into (4), and projecting this system onto the re-
duced test basis, the followingM×M LTI system
is obtained:

ẋM(t) = AMxM(t)+BMuP(t),
yQM(t) = CMxM(t),

(16)
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where
AM = ΨΨΨT

MPAΦΦΦM,

BM = ΨΨΨT
MPB,

CM = CΦΦΦM,

(17)

and whereyQM is a reduced approximation of the
output.

2.3.3. Continuous vs. discrete projection

In the majority of applications of reduced order
modeling, the discrete projection approach is em-
ployed in constructing the ROM. This discrete ap-
proach has the advantage that boundary condition
terms present in the discretized equation set are of-
ten (depending on the implementation) inherited by
the ROM; that is, the ROM solution will satisfy the
boundary conditions of the FOM. Certain proper-
ties of the numerical scheme used to solve the full
equations may be inherited by the ROM as well.
The discrete approach can be black-box, at least
for linear systems of the form (4): it operates on
the matricesA, B andC, so that access to the high-
fidelity code that was used to generate these matri-
ces or the governing PDEs is not required provided
these matrices can be written out from the high-
fidelity code. In contrast, the continuous projection
approach is tied to the governing PDEs – the con-
tinuous problem (1) needs to be translated to the
discrete setting, e.g., by interpolating the reduced
basis modes and evaluating the continuous inner
products in (13) using a numerical quadrature [6].
Although the continuous approach is inherently an
embedded method, its similarity to spectral numer-
ical approximation methods allows the use of anal-
ysis techniques employed by the spectral methods
community [36; 7].

Which of the two projection approaches described
above (continuous vs. discrete projection) is pre-
ferred depends on the application and the type of
model reduction approach sought (e.g., embedded
vs. black-box). The discussion in the remainder of
this paper is intended to aid the reader in selecting
one of these approaches for his or her problem of
interest.

Note that, regardless of which projection approach
is used to build the ROM, the ROM dynamical sys-
tem will have the form (16), as (13) has this form
when written as a matrix problem. The solution to
the ROM is obtained by advancing (16) forward
in time using a time-integration scheme. Since
the system considered here is linear, the projection
terms in (13) are not time-dependent. Hence, these
terms can be pre-computed and stored in the of-
fline stage of the model reduction – in particular,
they need not be re-computed at each time step of
the online time-integration stage of the ROM.

3. Stability definitions

As stated in Section 1, one of the objectives of this
paper is to present and establish connections be-
tween some model reduction techniques that have
an a priori stability guarantee. Before beginning
this discussion, some general definitions of stabil-
ity that will be used in subsequent analysis are re-
viewed.

3.1. Energy-stability

The concept of energy-stability originated in the
literature involving the numerical analysis of spec-
tral and finite difference discretizations to time-
dependent PDEs [47; 8; 12]. It has also appeared in
the Galerkin finite element method literature, e.g.,
[4; 2], where the energy-method was employed to
derive stable Galerkin methods for hyperbolic con-
servation laws. It is well-known that physical sys-
tems admit a certain energy structure. The basic
idea behind building energy-stable ROMs is that a
ROM constructed for such systems should preserve
this energy structure. Among the authors who have
explored the concept of energy-stability in the con-
text of model reduction are Rowleyet al. [23] and
Kwasniok [3]. In [23], Rowleyet al. introduced
a family of “energy-based” inner products for the
purpose of constructing stable Galerkin ROMs for
fluid problems. In [3], Kwasniok recognized the
role of energy conservation in ROMs of nonlinear,
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incompressible fluid flow for atmospheric model-
ing applications, and proposed a Galerkin projec-
tion approach in which the ROM conserves turbu-
lent kinetic energy or turbulent enstrophy.

The concept of energy-stability will be introduced
in the context of a specific canonical model prob-
lem, then generalized. Consider, without loss of
generality, the following scalar initial value prob-
lem, known as a Cauchy problem [20]:

ẋ(t) = L (x(t)), t ≥ 0
x(0) = f.

(18)

Here,L denotes a linear differential operator with
constant coefficients (e.g., (3), the linear operator
in (1)), f ∈R

n is the initial condition, andx(t) ∈R
n

is the system state at timet ≥ 0. No boundary con-
ditions are given in (18), as the canonical Cauchy
problem is posed on the whole real line [8]. This is
equivalent to the problem being posed on a fixed
domain with periodic boundary conditions. The
operatorL is said to be semi-bounded with respect
to an inner product(·, ·) if it satisfies the follow-
ing inequality for all sufficiently smooth functions
w ∈ L2:

(w,L w) ≤ α(w,w), (19)

whereα ∈R. The following theorem (quoted from
[20]) states the conditions under which the Cauchy
problem (18) is well-posed.

Theorem 3.1.1 ([20], p. 70): The Cauchy problem
(18) is well-posed if and only if the operatorL is
semi-bounded with respect to an inner product(·, ·)
which corresponds to a norm equivalent to theL2

norm.

Consider now a Galerkin approximation to (18),
denoted here byxN, and satisfying

(ẋN,φφφ ) = (L (xN),φφφ ), (20)

for all φφφ sufficiently smooth, and supposeL is
semi-bounded with respect to(·, ·). Settingφφφ = xN

in (20) leads to the following energy estimate for
the Galerkin approximation:

dEN

dt
≤ 2αEN, (21)

where EN ≡ 1
2||xN||

2 denotes the energy of the
Galerkin approximationxN, and || · || is the norm
induced by the inner product(·, ·). Applying Gron-
wall’s lemma ((84) in Appendix A.1) to (21) gives
the inequality

||xN(t)|| ≤ e
1
2αt ||xN(0)||. (22)

The result (22) says that the energy of the numeri-
cal solution to (20) is bounded in a way that is con-
sistent with the behavior of the energy of the exact
solution to the original differential equation (18),
i.e., the numerical solution is energy-stable. This
definition can be extended to a ROM LTI system of
the form (16).

Definition 3.1.2 (Energy-Stability [12]): A ROM
LTI system (16) is called energy-stable if

EM(t) ≤ eαtEM(0), (23)

for some constantα ∈ R, where

EM ≡
1
2
||xM ||2 (24)

is the system energy of the ROM numerical solu-
tion xM to (16), and|| · || is a norm equivalent to the
L2 norm.

In general, a ROM LTI system (16) is not guar-
anteed to satisfy Definition 3.1.2 even if the PDE
system (1) is well-posed and the full order LTI sys-
tem arising from the discretization of these PDEs
in space (4) is stable. However, it is often possi-
ble to ensure (23) holds for the ROM LTI system
through a careful selection of the reduced trial and
test basesΦΦΦM andΨΨΨM and/or the inner product in
which the projection step of the model reduction is
performed (Sections 4 and 5).

3.2. Lyapunov, asymptotic and exponential stabil-
ity

The concept of energy-stability can be related to
classical notions of stability, namely Lyapunov sta-
bility, asymptotic stability and exponential stabil-
ity. Consider an autonomous nonlinear dynamical
system:

ẋ = f(x), x ∈ R
n, (25)
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wheref ∈ R
n is a given function, subject to some

initial condition x(0) = x0. Let xe be an equilib-
rium point of the system (25), meaningf(xe) = 0
for all t ≥ 0.

Definition 3.2.1 (Lyapunov, asymptotic and expo-
nential stability) [15]: The equilibrium pointxe of
(25) is said to be:

(a) Lyapunov stableif ∀ε > 0 there exists a
δ (ε) > 0 such that if||x(0)− xe|| < δ , then
||x(t)−xe|| < ε ∀t ≥ 0.

(b) Asymptotically stableif there exists aδ >
0 such that if ||x(0) − xe|| < δ , then
limt→∞ ||x(t)−xe|| = 0.

(c) Exponentially stableif there existα ,β ,δ >
0 such that if||x(0)− xe|| < δ , then ||x(t)−
xe|| ≤ α ||x(0)−xe||e−β t ∀t ≥ 0.

In other words, if an equilibrium point of (25) is
Lyapunov stable, solutions within a distanceδ > 0
from it will remain a distanceε > 0 from it for
all time; if it is asymptotically stable, solutions
within this distance will eventually converge to the
equilibrium; if it is exponentially stable, the solu-
tions will not only converge, but at an exponen-
tial rate. In general, exponential stability implies
asymptotic stability, and asymptotic stability im-
plies Lyapunov stability.

The following theorem, known as the Lyapunov
stability theorem [15], can be used to characterize
the stability of the stability of an equilibrium point
xe for (25).

Theorem 3.2.2 (Lyapunov Stability Theorem) [15]:
Let V be a non-negative function onRn and letV̇
represent the time derivative ofV along trajecto-
ries of the system dynamics (25), i.e.,V̇ = ∂V

∂x ẋ =
∂V
∂x f(x). LetBr = Br(xe) be a ball of radiusr around
an equilibrium pointxe of (25). If there exists an
r > 0 such thatV is positive definite anḋV is neg-
ative semi-definite for allx ∈ Br , thenxe is Lya-
punov stable.

The functionV defined in Theorem 3.2.2 above is
known as the Lyapunov function for the system

(25). Observe that the numerical energyEN de-
fined in (21) satisfies the definition of a Lyapunov
function (Theorem 3.2.2) if (26) holds. Thus, if an
LTI ROM (4) is energy-stable withα = 0 (Defini-
tion 3.1.2), then the ROM is Lyapunov stable. In
Section 5, it is shown how Theorem 3.1.2 can be
used to define a stability-preserving inner product
for building stable ROMs for (4).

The stability concepts introduced above simplify
for the specific case of LTI systems of the form
(4). It is straightforward to verify that for linear
systems, asymptotic and exponential stability are
equivalent. Moreover, the following result holds.

Theorem 3.2.3 (Asymptotic Stability Theorem for
LTI Systems) [15]:An LTI system (4) is asymp-
totically (and exponentially) stable if and only if
all the eigenvalues ofA have strictly negative real
parts.

Theorem 3.2.3 is commonly used to check numer-
ically (a posteriori) the stability of an LTI system
(4) or a ROM (16) constructed for an LTI system
(Section 5.2).

3.3. Time-stability

Another form of stability is what is referred to
herein as “time-stability”. Essentially, a system
that is time-stable is one whose solution will not
“blow up” (i.e., produce an unbounded output)
given a finite input and/or non-zero initial con-
dition. For a general nonlinear system, expo-
nential stability implies time-stability, but time-
stability is a stronger notion than asymptotic stabil-
ity [53]. Since exponential and asymptotic stability
are equivalent for LTI systems, asymptotic stability
doesimply time-stability in this special case.

The concept of time-stability can also be defined in
terms of the system energy.

Definition 3.3.1 (Time-Stability [12]): A ROM
LTI system (16) is called time-stable if the numer-
ical energy of the ROM solution is non-increasing
in time, i.e., if

dEN

dt
≤ 0. (26)
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It is straightforward to demonstrate that a time-
stable scheme is also energy-stable. Suppose an
LTI ROM (16) is time-stable, so the ROM solu-
tion satisfies the energy estimate (26). Applying
Gronwall’s lemma ((84) in Appendix A.1) to this
inequality,EN(t) ≤ EN(0). Thus, (23) holds with
α = 0.

In general, the converse of the above statement
does not hold: energy-stability does not necessar-
ily imply time-stability. This is to be expected.
The practical implication of a ROM possessing the
energy-stability property is that its numerical so-
lution is bounded in a way that is consistent with
the behavior of the exact solutions of the govern-
ing equations (1). It is possible, in general, that
unstable, physical solutions to the governing PDEs
exist, i.e., solutions that are unbounded ast → ∞.
In this case, the energy-stable ROM may also pos-
sess unstable solutions that correspond to those un-
stable solutions of the governing continuous equa-
tions [1].

4. Stable model reduction for LTI systems via
continuous projection

In this section, an approach for building energy-
stable ROMs via continuous Galerkin projection is
developed for linear PDE systems of the form:

q̇′+A i
∂q′

∂xi
−K i j

∂ 2q′

∂xi∂x j
+Gq′ = f, (27)

posed in an open bounded domainΩ. In (27),
q′ ∈ R

n denotes a vector of unknowns,f ∈ R
n is

a source term,A i, K i j and G are n× n matrices,
where 1≤ i, j ≤ d, with d denoting the number
of spatial dimensions, andn ∈ N. The matrices
A i, K i j and G could be a function of space, but
they are assumed to be steady (not a function of
time t). They are also assumed to be independent
of the solutionq′, so that (27) is linear. The so-
called Einstein notation (implied summation on re-
peated indices) has been employed in (27) and sub-
sequent expressions. Most linearized conservation
laws, as well as many PDEs of physical interest,

can be written in the form (27). For conservation
laws, a system of the form (27) is obtained by writ-
ing the solutionq(x, t) to the underlying nonlinear
conservation law as a steady mean plus an unsteady
fluctuation,

q(x, t) = q̄(x)+q′(x, t), (28)

and linearizing the full set of PDEs around the
steady mean̄q to yield a system of the form (27)
for q′(x, t). In this case, the matricesA i, K i j andG
appearing in (27) are functions of̄q and its gra-
dients. If K i j = 0 ∀i, j, (27) is known as a hy-
perbolic system [14]. An example of a system
of this form is the linearized compressible Euler
system. A method for constructing energy-stable
ROMs specifically for the compressible Euler sys-
tem using continuous Galerkin projection was pre-
sented in [6; 7], and is extended to generic systems
of the form (27) herein. Otherwise, ifK i j , 0, (27)
is known as an incompletely parabolic system [14].
A canonical example of such a system is the lin-
earized compressible Navier-Stokes system.

Before presenting an approach for building stable
ROMs for (27) using continuous Galerkin projec-
tion, some discussion of the assumptions required
for these stability results is in order.

The first assumption warranting some discussion
is smoothness. In general, the analysis below as-
sumes that the solution to (27) is in the Sobolev
space of first order,H1(Ω) and that the matrices
A i andK i j are once and twice differentiable with
respect to the spatial variable, respectively. Note
that in order to obtain (27) from a nonlinear conser-
vation law through a linearization around a steady
base state (28), it is required that the base flow lin-
earized around is differentiable.

To complete the problem definition, it is neces-
sary to specify some boundary conditions for the
system (27).A detailed discussion of well-posed
boundary conditions for hyperbolic and incom-
pletely parabolic systems of the form (27) is given
in [8]. The key result shown therein is that it is
always possible to find a set of boundary condi-
tions such that the problem (27) is well-posed even
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in the hyperbolic limit, that is, asK i j → 0 (Theo-
rem 3.3 in [8]). Moreover, the number of Dirichlet
boundary conditions required for well-posedness
depends on the signs of the eigenvalues of the ma-
trix

An ≡ A ini , (29)

on a boundary∂Ω having an outward-facing unit
normal n. Most often, boundary conditions are
formulated in the so-called characteristic variables
[7; 8], given by:

w′ = S−1
n q′, (30)

whereSn is the matrix that diagonalizesAn:

An = SnΛΛΛnS−1
n , (31)

whereΛΛΛn is a diagonal matrix containing the eigen-
values ofAn

3.

The subsequent stability proofs for ROMs con-
structed using continuous Galerkin projection for
systems of the form (27) will assume the specific
scenario in which theAn has eigenvalues that are
all the same sign on the boundaries of∂Ω. More
specifically, it will be assumed that∂Ω can be par-
titioned as∂Ω = ∂ΩI ∪∂ΩO, where∂ΩI ∩∂ΩO =
/0 and An is negative definite on∂ΩI and posi-
tive definite on∂ΩO, so that well-posed boundary
conditions are all-Dirichlet boundary conditions on
∂ΩI and no boundary conditions on∂ΩO [8]. This
scenario, and the boundary conditions it leads to,
arise in many physically-relevant problems, e.g.,
fluid problems with a supersonic inflow and su-
personic outflow [7], and enables a clean, generic
stability analysis of the ROM including boundary
condition terms.

It will also be assumed (again, to enable a clean,
generic stability analysis of the ROM) that the all-
Dirichlet boundary condition on∂ΩI is steady (not
a function of time), i.e.,

q(x, t) = g(x), on ∂ΩI , (32)

3It can be shown thatAn is diagonalizable for hyperbolic
and incompletely parabolic systems [8].

whereg(x) is a function of boundary data. It is
straightforward to see that if the base flow̄q(x) is
selected such that it satisfies the boundary condi-
tion (32), the relevant boundary conditions on the
fluctuationq′(x, t) are of the homogeneous Dirich-
let type:

q′(x, t) = 0, on ∂ΩI . (33)

It is equally straightforward to show that if the
snapshots forq′(x, t) satisfy the boundary condi-
tion (33), the POD modes obtained from these
snapshots will satisfy this boundary condition as
well.

Lastly, in the caseK i j , 0 (e.g., a viscous flow
problem), it will be assumed that the viscous
boundary conditions imposed are well-posed, i.e.,
they satisfy the well-known well-posedness condi-
tions derived in [8].

A stability analysis for boundary conditions arising
from a scenario in whichAn does not have strictly
positive or negative eigenvalues (e.g., subsonic in-
flow, subsonic outflow in a fluid context) and/or the
boundary conditions are time-dependent is often
possible, but requires a case-by-case examination
of the boundary terms that arise in the proofs of
Theorem 4.1.1 and Corollary 4.2.1. This study was
one undertaken in earlier work by the authors for
the specific case of linearized inviscid compress-
ible flow in some earlier work [7; 6]. The bound-
ary conditions can be implemented in a ROM con-
structed via continuous Galerkin projection using
either a weak formulation or the penalty method.
For completeness, these approaches are detailed in
Appendix A.4.

4.1. A stabilizing transformation

Suppose there exists a transformation

T : R
n → R

n,
q′ → v′,

(34)

such thatv′ = v′(Tq′), and such that in the new
variablesv′, the system (27) has the form

v̇′ +AS
i

∂v
∂xi

−KS
i j

∂ 2v′

∂xi∂x j
+GSv′ = fS, (35)
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where:

• Property 1: The matricesAS
i are symmetric

for all 1≤ i ≤ d.

• Property 2: The matricesKS
i j are symmetric

for all 1≤ i, j ≤ d.

• Property 3:The augmented viscosity matrix:

KS≡







KS
11 . . . KS

1d
...

. . .
...

KS
d1 . . . KS

dd






(36)

is positive semi-definite.

Theorem 4.1.1:Suppose a ROM for (35) on an
open bounded domainΩ with a smooth boundary
∂Ω = ∂ΩI ∪ ∂ΩO, ∂ΩI ∩ ∂ΩO = /0 is constructed
for v′ using continuous Galerkin projection in the
L2(Ω) inner product. SupposeAS

n (29) is negative
definite on∂ΩI (e.g., ∂ΩI is a supersonic inflow
boundary in a fluid mechanics context), and pos-
itive definite on∂ΩO (e.g., ∂ΩO is a supersonic
outflow boundary in a fluid mechanics context), so
that the following boundary conditions onv′ are
well-posed:

• Homogeneous all-Dirichlet boundary condi-
tions (v′ = 0) on ∂ΩI .

• No boundary conditions on∂ΩO.

If KS
i j , 0 suppose additional viscous boundary

conditions are imposed following the criteria listed
in [8] such that the resulting IBVP is well-posed.
Suppose the matrices in (35) satisfyProperties 1–3
above. Letv′M denote the ROM solution to (35).
Then the ROM is energy-stable with energy esti-
mate

||v′M(·,T)||2 ≤ e
1
2βST ||v′M(·,0)||2, (37)

whereβS is an upper bound on the eigenvalues of
the matrix

BS≡
∂AS

i

∂xi
+

∂ 2KS
i j

∂xi∂x j
−GS− (GS)T . (38)

Moreover, this energy-stability result holds forany
choice of reduced basis.

Proof. To prove energy-stability of a ROM con-
structed for (35), it is necessary to bound the en-
ergy of the ROM solution to (35) withfS = 0:

dEM
dt = 1

2
d
dt ||v

′
M||22

= 1
2

d
dt (v

′
M,v′M)

=
(

v′M,
∂v′M
∂ t

)

=
(

v′M,−AS
i

∂v′M
∂xi

+KS
i j

∂ 2v′M
∂xi∂xj

−GSv′M
)

= −
∫

Ω(v′M)TAS
i

∂v′M
∂xi

dΩ +
∫

Ω(v′M)TKS
i j

∂ 2v′M
∂xi∂xj

dΩ
−

∫

Ω(v′M)TGSv′MdΩ.
(39)

Each of the terms in (39) will be bounded sepa-
rately. First,

−
∫

Ω(v′M)TAS
i

∂v′M
∂xi

∂Ω = − 1
2

∫

Ω
∂

∂xi

(

(v′M)TAS
i v′M

)

dΩ

+ 1
2

∫

Ω(v′M)T ∂AS
i

∂xi
v′MdΩ

= − 1
2

∫

∂ΩI
(v′M)TAS

i niv′MdΓ
− 1

2

∫

∂ΩO
(v′M)TAS

i niv′MdΓ

+ 1
2

∫

Ω(v′M)T ∂AS
i

∂xi
v′MdΩ.

(40)
In (40), the property that each of the matricesAS

i is
symmetric has been employed (Property 1). Sub-
stituting the homogeneous all-Dirichlet boundary
condition on∂ΩI into the first integral in (40), and
employing the fact thatAS

n is symmetric positive
definite on∂ΩO, the following bound is obtained:

−
∫

Ω(v′M)TAS
i

∂v′M
∂xi

∂Ω = − 1
2

∫

∂ΩO
(v′M)TAS

i niv′MdΓ

+ 1
2

∫

Ω(v′M)T ∂AS
i

∂xi
v′MdΩ

≤ 1
2

∫

Ω(v′M)T ∂AS
i

∂xi
v′MdΩ.

(41)

Next, note that:

KS
i j

∂ 2v′M
∂xi ∂xj

= ∂
∂xi

(

KS
i j

∂v′M
∂xj

)

−

(

∂KS
i j

∂xi

∂v′M
∂xj

)

.

(42)
Then,

∫

Ω(v′M)TKS
i j

∂ 2v′M
∂xi∂xj

dΩ =
∫

Ω(v′M)T ∂
∂xi

(

KS
i j

∂v′M
∂xj

)

dΩ

−
∫

Ω(v′M)T ∂KS
i j

∂xi

∂v′M
∂xj

dΩ.

(43)
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Again, each of the two terms in (43) will be
bounded separately.

∫

Ω(v′M)T ∂
∂xi

(

KS
i j

∂v′M
∂xj

)

dΩ = −
∫

Ω
∂v′M
∂xi

T
KS

i j
∂v′M
∂xj

dΩ

+
∫

∂ΩI
(v′M)TKS

i j
∂v′M
∂xj

nidΓ

+
∫

∂ΩO
(v′M)TKS

i j
∂v′M
∂xj

nidΓ

≤
∫

∂ΩI
(v′M)TKS

i j
∂v′M
∂xj

nidΓ

+
∫

∂ΩO
(v′M)TKS

i j
∂v′M
∂xj

nidΓ,

(44)
provided the matrix (36) is positive semi-definite

(Property 3).

Now for the second term in (43):

−
∫

Ω(v′M)T ∂KS
i j

∂xi

∂v′M
∂xj

dΩ

= −1
2

∫

Ω
∂

∂xj

(

(v′M)T ∂KS
i j

∂xi
v′M

)

dΩ

+1
2

∫

Ω(v′M)T ∂ 2KS
i j

∂xi∂xj
v′MdΩ

= −1
2

∫

∂ΩI
(v′M)T ∂KS

i j

∂xi
n jv′MdΓ

−1
2

∫

∂ΩO
(v′M)T ∂KS

i j

∂xi
n jv′MdΓ

+1
2

∫

Ω(v′M)T ∂ 2KS
i j

∂xi∂xj
v′MdΩ.

(45)

In (45), the property that theKS
i j matrices and

therefore their derivatives are symmetric has been
employed (Property 2).

Finally, (41) and (43) are substituted into (39).
As shown in [8], the viscous boundary integral
terms on∂ΩI will be negative provided the viscous
boundary conditions are well-posed.The following
bound is obtained:

1
2

d
dt ||v

′
M||22 ≤ 1

2

∫

Ω(v′M)T
(

∂AS
i

∂xi

)

v′MdΩ

+1
2

∫

Ω(v′M)T ∂ 2KS
i j

∂xi ∂xj
v′MdΩ

−1
2

∫

Ω(v′M)TGSv′MdΩ
−1

2

∫

Ω(v′M)T(GS)Tv′MdΩ
−1

2

∫

∂ΩN
(v′M)TAS

i niv′MdΓ
= 1

2||B
S||22,

(46)

whereBS is given by (38). Applying Gronwall’s in-
equality ((84) in Appendix A.1) to (46), it is found
that:

||v′M(·,T)||2 ≤ e
1
2βST ||v′M(·,0)||2, (47)

whereβS is an upper bound on the eigenvalues of
the matrixBS (38).

�

The proof of Theorem 4.1.1 is one of the new con-
tributions of this article.

Note that, ifG = 0 in (27) and theA i andK i j ma-
trices are spatially-constant, it follows thatβS = 0
in (47). In this case, if the ROM for (27) is con-
structed in the variablesv, the ROM will be time-
stable as well as stable in the sense of Lyapunov, in
addition to being energy-stable. For linearized con-
servation laws (e.g., the linearized shallow water
equations, the linearized compressible Euler equa-
tions, the linearized compressible Navier-Stokes
equations), the property thatG = 0 and theA i and
K i j are spatially-constant will in general hold if the
base flow is spatially uniform.

4.2. Stability-preserving “symmetry inner prod-
uct” and Petrov-Galerkin connection

A key property of systems of the form (27) is that
they are symmetrizable [8; 6; 7]; that is, it is pos-
sible to derive a symmetric positive-definite matrix
H such that:

• Property 1∗: The matricesHA i are symmetric
for all 1≤ i ≤ d.

• Property 2∗: The matricesHK i j are symmet-
ric for all 1≤ i, j ≤ d.

• Property 3∗: The augmented viscosity matrix:

KH ≡







HK 11 . . . HK 1d
...

. . .
...

HK d1 . . . HK dd






(48)

is positive semi-definite.

SinceH is symmetric positive-definite, the follow-
ing defines a valid inner product:

(

q(1),q(2)
)

(H,Ω)
≡

∫

Ω
q(1)THq(2)dΩ. (49)

Following the terminology introduced in [6; 7],
the inner product (49) will be referred to as the
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“symmetry inner product”. It is straightforward to
see that the following corollary to Theorem 4.1.1
holds.

For a general system of PDEs, e.g., the linearized
Euler equations (Example 3 in Section 4.3), the
norm induced by the symmetry inner product (49)
is not a recognizable “energy” quantity, but still
satisfies the requisite mathematical properties for
an energy analysis. For some PDEs, thereis a clear
connection between the energy inner product and
a physical energy quantity associated with those
equations, e.g., theL2 inner product for the incom-
pressible Navier-Stokes equations, which is identi-
cal to the kinetic energy of the solution, or the en-
tropy inner product for the full nonlinear compress-
ible Navier-Stokes equations, which represents the
solution entropy [62].

Corollary 4.2.1: Suppose a ROM for (27) on an
open bounded domainΩ with the same boundary
condition assumptions as those in Theorem 4.1.1
for q′ on∂Ω = ∂ΩI ∪∂ΩO, where∂ΩI ∩∂ΩO = /0
is constructed using continuous Galerkin projec-
tion in the symmetry inner product (49). Suppose
Properties 1∗-3∗ hold. LetqM denote the ROM so-
lution to (27). Then the ROM is energy-stable with
energy estimate

||q′
M(·,T)||(H,Ω) ≤ e

1
2βH T ||q′

M(·,0)||(H,Ω), (50)

whereβH is an upper bound on the eigenvalues of
the matrix

BH ≡
∂ (HA i)

∂xi
+

∂ 2(HK i j )

∂xi∂x j
−HG −GTH (51)

Moreover, this energy-stability result holds forany
choice of reduced basis.

Proof. Because of simple linear transformations,
the proof is analogous to the proof of Theorem
4.1.1.

�

Again, in the case thatG = 0 and theA i, K i j and
H matrices are spatially-constant (which will oc-
cur if the base flow is uniform, i.e., not a function

of the spatial variablex), it will follow from Corol-
lary 4.2.1 that a ROM constructed in the symmetry
inner product (49) will be time-stable and stable in
the sense of Lyapunov, in addition to being energy-
stable.

It is interesting to observe that a Galerkin projec-
tion of the governing (27) in the symmetry inner
product (49) is equivalent to a Petrov-Galerkin pro-
jection. Letφφφ i for i = 1, ...,M denote the reduced
trial basis vector for the solutionq. Performing a
Galerkin projection of the equations (27) onto the
modesφφφ k gives

∫

Ω φφφ T
k H

(

q̇′+A i
∂q′

∂xi
+K i j

∂ 2q′

∂xi∂xj
+Gq′

)

dΩ
=

∫

Ω φφφ T
k HfdΩ,

(52)
for k = 1, ...,M. Equation (52) is equivalent to a
Petrov-Galerkin projection of the equations (27) in
the regularL2 inner product

∫

Ω ψψψT
k

(

q̇′+A i
∂q′

∂xi
+K i j

∂ 2q′

∂xi∂xj
+Gq′

)

dΩ
=

∫

Ω ψψψT
k fdΩ,

(53)

where the reduced test basis functions are given by
ψψψk = Hφφφk, for all k = 1, ...,M.

4.3. Examples of stability-preserving transforma-
tion and symmetry inner product for several
physical systems

It is straightforward to derive the matrixH that de-
fines the symmetry inner product (49) for many
problems of physical interest. This matrix has been
derived herein by the authors for several hyperbolic
and incompletely parabolic systems (the wave
equation, the linearized shallow water equations,
the linearized compressible Euler equations, and
the linearized compressible Navier-Stokes equa-
tions), and is given below.

Example 1: Wave Equation

Consider the one-dimensional (1D) wave equation:

ü = a2 ∂ 2u
∂x2 , (54)
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wherea∈ R denotes the wave speed, and ¨u≡ ∂ 2u
∂ t2 .

(54) is a canonical PDE of the hyperbolic type.
This equation can be written as a first order system

q̇ = A
∂q
∂x

, (55)

where

q =

(

u̇
∂u
∂x

)

, A =

(

0 a2

1 0

)

. (56)

Remark that if

H =

(

1 0
0 a2

)

, (57)

the matrixHA is symmetric [32].

Example 2: Linearized Shallow Water Equations

Consider the linearized form of the shallow water
equations:

q̇′ +A i
∂q′

∂xi
+Gq′ = 0. (58)

These equations are obtained from the full (non-
linear) shallow water equations by decomposing
the fluid vectorq(x, t) into a steady mean plus an
unsteady fluctuation (28), and linearizing the full
shallow water equations around the steady mean
stateq̄. If qT =

(

u, v, w, φ
)

, then the con-
vective flux matrices in the hyperbolic system (58)
in three-dimensions (3D) are given by:

A1 =









ū 0 0 1
0 ū 0 0
0 0 ū 0
φ̄ 0 0 ū









, A2 =









v̄ 0 0 0
0 v̄ 0 1
0 0 v̄ 0
0 φ̄ 0 v̄









,

A3 =









w̄ 0 0 0
0 w̄ 0 0
0 0 w̄ 1
0 0 φ̄ w̄









,

(59)
whereφ denotes the local height of the fluid above
the equilibrium depth, andu, v, andw are the com-

ponents of the fluid velocity vector [32]. The ma-
trix G in (58) is given by

G =













∂ ū
∂x

∂ ū
∂y

∂ ū
∂z 0

∂ v̄
∂x

∂ v̄
∂y

∂ v̄
∂z 0

∂ w̄
∂x

∂ w̄
∂y

∂ w̄
∂z 0

∂ φ̄
∂x

∂ φ̄
∂y

∂ φ̄
∂z ∇ · ū













. (60)

Each of the convective flux matrices (59) can be
symmetrized by the matrix

H =









φ̄ 0 0 0
0 φ̄ 0 0
0 0 φ̄ 0
0 0 0 1









. (61)

Example 3: Linearized Compressible Euler Equa-
tions

Consider the linearized compressible Euler equa-
tions. These equations may be used if a com-
pressible fluid system can be described by inviscid,
small-amplitude perturbations about a steady-state
mean flow. The equations are obtained from the
full (non-linear) compressible Euler equations by
decomposing the fluid vectorq(x, t) into a steady
mean plus an unsteady fluctuation (28) and lin-
earizing these equations around the steady mean
stateq̄. If qT =

(

u, v, w, ζ , p
)

, whereu,
v and w are the three components of the velocity
vector,ζ is the specific volume (the reciprocal of
the density), andp is the pressure, the linearized
compressible Euler equations take the form (58).
In 3D, the convective flux matricesA i in the lin-
earized compressible Euler hyperbolic system (58)
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are given by:

A1 =













ū 0 0 0 ζ̄
0 ū 0 0 0
0 0 ū 0 0
−ζ̄ 0 0 ū 0
γ p̄ 0 0 0 ū













,

A2 =













v̄ 0 0 0 0
0 v̄ 0 0 ζ̄
0 0 v̄ 0 0
0 −ζ̄ 0 v̄ 0
0 γ p̄ 0 0 v̄













,

A3 =













w̄ 0 0 0 0
0 w̄ 0 0 0
0 0 w̄ 0 ζ̄
0 0 −ζ̄ w̄ 0
0 0 γ p̄ 0 w̄













.

(62)

Here,γ = CP/CV is the ratio of specific heats. The
matrix G in (58) has the form

G =



















∂ ū
∂x

∂ ū
∂y

∂ ū
∂z

∂ p̄
∂x 0

∂ ū
∂x

∂ ū
∂y

∂ ū
∂z

∂ p̄
∂y 0

∂ ū
∂x

∂ ū
∂y

∂ ū
∂z

∂ p̄
∂z 0

∂ ζ̄
∂x

∂ ζ̄
∂y

∂ ζ̄
∂z −∇ · ū 0

∂ p̄
∂x

∂ p̄
∂y

∂ p̄
∂z 0 γ∇ · ū



















. (63)

The reader may verify that if the linearized com-
pressible Euler system (58) is pre-multiplied by the
following symmetric positive definite matrix:

H =















ρ̄ 0 0 0 0
0 ρ̄ 0 0 0
0 0 ρ̄ 0 0
0 0 0 α2γρ̄2p̄ ρ̄α2

0 0 0 ρ̄α2 (1+α2)
γ p̄















, (64)

whereα is a real, non-zero parameter to yield the
system, the convective flux matricesHA i are all
symmetric [6; 7].

Example 4: Linearized Compressible Navier-
Stokes Equations

Consider the 3D linearized compressible Navier-
Stokes equations. These equations are appropriate

when a compressible fluid system can be described
by viscous, small-amplitude perturbations about a
steady-state base flow. As with the linearized shal-
low water equations and linearized compressible
Euler equations, to derive these equations from
the full (non-linear) compressible Navier-Stokes
equations, the fluid vectorq(x, t) is written as the
sum of a steady mean plus an unsteady fluctuation
(28), and a linearization around the steady mean
is performed. If the viscous work terms are ne-
glected from the equations4 (appropriate, for ex-
ample, in a low Mach number regime), the re-
sult is a linear incompletely parabolic system of
the form (27). If the fluid vector is given by
qT =

(

u, v, w, T, ρ
)

, whereT and ρ de-
note the fluid temperature and density respectively,
the convective and viscous flux matrices that ap-
pear in (27) are given by the expressions found in
[8], and are repeated in Appendix A.5 to keep this
article self-contained. The reader can verify that if
the system (27) is pre-multiplied by the symmetric
positive definite matrix given by

H ≡















ρ̄ 0 0 0 0
0 ρ̄ 0 0 0
0 0 ρ 0 0
0 0 0 ρ̄R

T̄(γ−1)
0

0 0 0 0 RT̄
ρ̄















, (65)

the “symmetrized” convective flux matricesHA i

and diffusive flux matricesHK i j satisfyProperties
1∗–3∗ in Section 4.2. Here,Rdenotes the universal
gas constant.

Note that the symmetry transformations in the ex-
amples above are not unique. For example, in [9],
Abarbanelet al. exhibit a transformation of the

4To the authors’ knowledge, the viscous work terms are
invariably neglected from the linearized compressible Navier-
Stokes equations by researchers studying energy-stability of
these equations [8; 9]. The omission of these terms is jus-
tified only in the low Mach number regime, or in the case
that the base flow is uniform. The extension of the energy-
stability symmetrization approach presented here to the lin-
earized compressible Navier-Stokes equations in which the
viscous work terms are retained is the subject of present re-
search.
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form (35) for the linearized compressible Navier-
Stokes equations written in the primitive variables
qT =

(

ρ , u, v, w, p
)

.

4.4. Numerical experiments

The stability-preserving model reduction approach
based on continuous projection described in Sec-
tions 4.1–4.2 is now evaluated numerically on a
test case involving a 2D inviscid acoustic pres-
sure pulse in a 2D prismatic domain. The govern-
ing equations are the equations of linearized com-
pressible flow, given in Section 4.3 (Example 3)
above. Prior to showing these results, a stability-
preserving discrete implementation of the projec-
tion step of the model reduction is outlined.

4.4.1. Stability-preserving discrete implementa-
tion

The stability analysis of Sections 4.1–4.2 has as-
sumed that the integrals resulting from the projec-
tion of the governing equations onto the reduced
basis modes are evaluated exactly in continuous
form. This continuous result can be translated
to the discrete setting through the use of high-
precision numerical quadrature as follows. First,
the snapshots and the POD basis modes are cast
as a collection of continuous finite elements. It is
then possible to construct a numerical quadrature
operator that computes exactly (with respect to the
finite element representation) all continuous inner
products arising from the continuous Galerkin pro-
jection of the equations onto the POD modes. Sup-
pose the domainΩ is broken up intonel finite ele-
mentsΩe such that∪nel

e=1Ωe = Ω. Suppose each of
these elements havenn nodes. Then, the finite ele-
ment representation of the vectorq′ in (27) in each
elementΩe is:

q
′h
e =

nn

∑
i=1

Ni(x)q′
i(x), x ∈ Ωe, (66)

where theNi(x) are the finite element shape func-
tions used to represent the solution in each element.

With the representation (66), the modes will neces-
sarily be in the Sobolev spaceH1(Ω), as required
for the proof of Theorem 4.1.1.

By the discussion in Section 4.2, it is necessary to
compute numerically integrals of the form:

(

q(1),q(2)
)

(H,Ω)
=

∫

Ω
q(1)THq(2)dΩ. (67)

Suppose, without loss of generality, that the finite
element shape functions are chosen to be bilinear,
sonn= 4. The discrete representations of the vec-
tors q(1) and q(2) are denoted byqh(1) and qh(2),
respectively. The length of these vectors is equal to
the number of mesh nodesN times the dimension
of the vector,r. Let Hh

e be ther × r element inner
product matrix, taken to be piecewise constant over
each element. Then, the formula for numerical in-
tegration of (67) can be written as

(

q(1),q(2)
)

(H,Ω)
= qh(1)TWqh(2), (68)

whereW is a sparse block matrix comprised ofN×
N blocks of dimensionr × r. The(k, l)th block of
this matrix given bywklI , where

wkl =
nel

kl

∑
e=1

Hh
e

4

∑
j=1

Nke(x je)Nle(x je)ω je. (69)

Here, the outer sum is over the elements connected
to thek− l nodal “edge”; theω je are the integration
weights and thex je are the integration points.

A parallel C++ code that reads in the snapshot data
written by a high-fidelity code, assembles the nec-
essary finite element representation of the snap-
shots and computes the numerical quadrature nec-
essary for evaluation of the inner products has
been written by the authors. The code, known as
Spirit , performs all the calculations in paral-
lel using distributed matrix and vector data struc-
tures and parallel eigensolvers from the Trilinos
project [48], and uses thelibmesh finite element
library [49] to compute element quadratures. The
parallelism inSpirit allows for large data sets
and a relatively large number of POD modes. The
libmesh finite element library [49] was used to
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compute element quadratures. The online time-
integration of the ROM system (4) (with the ROM
coefficient matrix computed withinSpirit and
written to disk) is then performed using a fourth-
order Runge-Kutta scheme in MATLAB. For more
information on theSpirit code, the reader is re-
ferred to [57; 56].

4.4.2. 2D inviscid acoustic pulse example

For the sake of brevity, the proposed model re-
duction approach is evaluated on only one of the
physics sets given in Section 4.3. The test case con-
sidered is that of a 2D inviscid acoustic pressure
pulse in the following 2D prismatic domain:Ω =
(−1,1)× (−1,1) ∈ R

2. The governing equations
are the linearized compressible Euler equations
(Example 3 in Section 4.3). The base flow is uni-
form, with the following values: ¯p = 101,325 Pa,
T̄ = 300 K, ρ̄ = p̄

RT = 1.17 kg/m3, ū1 = ū2 =

0.0 m/s, and ¯c = 348.0 m/s, where ¯c≡
√

γRT̄ is
the mean speed of sound. The problem is initial-
ized with a pressure pulse in the middle of the do-
main:

p′(x;0) = 141.9e−10(x2+y2),

ρ ′(x;0) = p′(x;0)
RT̄ ,

T ′(x;0) = 0,
u′1(x;0) = u′2(x;0) = 0.

(70)

In terms of the mean values, the amplitude of the
initial pressure pulse (70) is 0.001ρ̄ c̄2.

For the problem considered, the high-fidelity fluid
simulation data were generated using a Sandia in-
house finite volume flow solver known as SIGMA
CFD. This code is derived from LESLIE3D [50],
a Large Eddy Simulations (LES) flow solver origi-
nally developed in the Computational Combustion
Laboratory at the Georgia Institute of Technology.
For a detailed description of the schemes and mod-
els implemented within LESLIE3D, the reader is
referred to [51; 52].

As both the high-fidelity code as well as the ROM
code are 3D codes, a 2D mesh of the domainΩ is
converted to a 3D mesh by extruding the 2D mesh

in the z-direction by one element. The computa-
tional grid for this test case is composed of 3362
nodes, cast into 9600 tetrahedral finite elements
within the ROM code. A no-penetration (slip wall)
boundary condition is imposed on the four sides of
the domain in thex andy plane:

u′ ·nnp = 0 onΓnp, (71)

where Γnp = {(x,z) ∈ Ω : y = 1,−1} ∪ {(y,z) ∈
Ω : x = 1,−1}, and nnp denotes the unit normal
vector toΓnp. To ensure the solution has no dy-
namics in thez-direction, the following values of
the z-velocity component are specified: ¯u3 = 0,
u′3(x;0) = 0. Symmetry boundary conditions are
imposed forz= constant in the high-fidelity code:















u′ ·ns = 0,
∇u′ ·ns = 0,
∇p′ ·ns = 0,
∇ρ ′ ·ns = 0,

on Γs, (72)

whereΓs = {(x,y) ∈ Ω : z = const} andns is the
unit normal vector toΓs. The high-fidelity com-
putational fluid dynamics (CFD) simulation from
which the ROM is generated is performed until
timeT = 0.01 seconds. During this simulation, the
initial pressure pulse (70) reflected from the walls
of the domain a number of times. Snapshots from
this simulation were saved every 5×10−5 seconds,
to yield a total of 200 snapshots. These snapshots
were used to construct 20 mode POD bases. Two
different procedures were used to generate a fluid
ROM for this problem: the POD/Galerkin method
with the symmetry inner product (49) withH given
by (64), and the POD/Galerkin method with the
classicalL2 inner product. The size of the POD
basis was determined using an energy criterion (8)
(see Section 2.1):M was selected such that the
modes capture 99.9% of the snapshot energy. Since
the base flow for this example is uniform,G = 0
andA i andK i j are spatially-constant in (27), mean-
ing an energy-stable ROM is expected to be time-
stable and stable in the sense of Lyapunov. Figure
1 shows a time history of the first two ROM modal
amplitudes (circles) compared to the projection of
the FOM CFD simulation onto the first two POD
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modes (solid lines) for the symmetry (a) andL2 (b)
ROMs. Mathematically, this figure compares as a
function of timet:

xM,i(t) vs.
(

q′
FOM,φφφ i

)

(H,Ω)
, (73)

for i = 1,2, whereq′
FOM is the high-fidelity CFD

solution from which the ROMs were constructed.
The reader may observe reasonable agreement be-
tween the symmetry ROM and the full simulation
(Figure 1(a)) for the time interval considered. In
contrast, agreement between theL2 ROM and the
full simulation is reasonable only until approxi-
matelyt = 0.005 seconds (Figure 1(b)). The oscil-
lations in theL2 ROM modal amplitudes observed
for t > 0.008 seconds suggest the presence of an
instability in theL2 ROM. If the modal amplitudes
xM,i(t) are plotted up to a longer time horizon (Fig-
ure 2), the instability in theL2 ROM is apparent.

Figures 3–4 compare the FOM pressure field (a)
with the field reconstructed from the symmetry (b)
andL2 (c) ROM solutions at timest = 4.5×10−4

and 7.95× 10−3 seconds. At timet = 4.5× 10−4

seconds, both the symmetry andL2 ROM solutions
are in good agreement with the high-fidelity so-
lution (Figure 3). At the later time, 7.95× 10−3

seconds, there is a good qualitative agreement be-
tween the high-fidelity solution and the symmetry
ROM solution (Figure 4(a), (b)). The same cannot
be said of theL2 ROM solution, however. It is ap-
parent from Figure 4(c) that theL2 ROM solution
has blown up byt = 7.95× 10−3 seconds, which
confirms the instability of the 20 modeL2 ROM
suggested in Figures 1–2.

5. Stable model reduction for LTI systems via
discrete projection

In Section 4, a method for constructing energy-
stable ROMs via continuous projection of a linear
system of PDEs was presented. The discussion in
Section 4 motivates the following question: can the
energy inner product be determined in a black-box
fashion for any given full order model system? It is
shown in the present section that there is a discrete

counterpart of the symmetry inner product, first de-
rived by Rowleyet al. [24] and termed the “Lya-
punov inner product” herein. Although the Lya-
punov inner product has appeared in several pub-
lications [24; 1; 30], to the authors’ knowledge, a
numerical study of the properties and performance
of POD ROMs constructed in the Lyapunov inner
product is lacking from the literature at the present
time, and one of the contributions of this work.

5.1. Stability-preserving Lyapunov inner product
and Petrov-Galerkin connection

Suppose the LTI system (4) is stable in the sense of
Lyapunov, i.e., all eigenvalues of the matrixA have
non-positive real parts (Corollary 3.4.2). SinceA is
stable, there exists a Lyapunov function for

ẋN(t) = AxN(t). (74)

In particular,

V(xN) = xT
NPxN, (75)

is a Lyapunov function for (74), whereP is the so-
lution of the following Lyapunov equation:

ATP+PA = −Q. (76)

Here,Q is some positive-definite matrix [15]. A
positive definite solutionP to (76) exists provided
A is stable. Moreover, ifQ is symmetric,P is sym-
metric as well. GivenA andQ, a solution to the
Lyapunov equation (76) can be obtained, for in-
stance, using thelyap function in the MATLAB
control toolbox [43]:

P = lyap(A’, Q, [], speye(N, N)) .

Assume the system (74) is stable and a positive-
definite symmetricP has been computed from (76).
SinceP is symmetric positive-definite, the follow-
ing

(

x(1)
N ,x(2)

N

)

P
≡ x(1)T

N Px(2)
N , (77)

defines an inner product. LetΦΦΦM be a reduced ba-
sis of sizeM, so that

xN(t) ≈ ΦΦΦMxM(t), (78)
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Figure 1: Time history of modal amplitudes for inviscid pressure pulse problem
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Figure 2: Time history of modal amplitudes for inviscid pressure pulse problem for longer time horizon

wherexM(t) denotes the ROM solution. Theorem
5.1.1 (summarized here from Section 2.3 of [24] to
keep this work self-contained) shows that (77) is
the energy inner product for this system.

Theorem 5.1.1 (from Section 2.3 of [24]):Assume
the linear full order system (74) is stable. Suppose
a ROM for (74) is constructed via a Galerkin pro-
jection in the(·, ·)P inner product (77), to yield the
following reduced linear system:

ẋM = ΦΦΦT
MPAΦΦΦMxM, (79)

where it has been assumed that the basisΦΦΦM has
been constructed to be orthonormal in the(·, ·)P in-
ner product, i.e.,ΦΦΦT

MPΦΦΦM = IM whereIM denotes
the M ×M identity matrix. Then, the ROM (79)
is energy-stable, time-stable and stable in the sense
of Lyapunov.
Proof. It is shown that the energyEM ≡ 1

2||xM ||22

of the ROM system (79) is non-increasing:

dEM
dt = 1

2
d
dt (xM ,xM)2

= xT
MẋM

= xT
MΦΦΦT

MPAΦΦΦMxM

= xT
MΦΦΦT

M

(

1
2PA+ 1

2PTA
)

ΦΦΦMxM

= xT
MΦΦΦT

M

(

1
2PA+ 1

2ATP
)

ΦΦΦMxM

= −1
2xT

MΦΦΦT
MQΦΦΦMxM

< 0,

(80)

sinceQ > 0. It follows that (79) is time-stable,
stable in the sense of Lyapunov and energy-stable
(Section 3).

�

The Lyapunov inner product (77) is a discrete
counterpart of the continuous symmetry inner
product (49). This inner product can be employed
to construct stable Galerkin ROMs for (4) using
discrete projection. An interesting question that
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Figure 3: Pressure field at timet = 4.5×10−4 seconds
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Figure 4: Pressure field at timet = 7.95×10−3 seconds

arises is whether the matrixP defining the Lya-
punov inner product (77) is related in some way
to the matrixW (68) that is used to perform the
continuous projection in the symmetry inner prod-
uct. In general, the answer is no. In particular,
W is by construction a sparse matrix (Figure 5(a)),
whereasP may be dense even ifA is sparse. This
is clear from Figures 5(b) and (c), which show (re-
spectively) the sparsity pattern of a sampleA ma-
trix5, and its correspondingP matrix.

One downside of the Lyapunov inner product is
that the matrixP which defines this inner product is
admittedly expensive to compute: the cost of solv-
ing the Lyapunov equation (76) requiresO(N3) op-
erations. As a consequence, the Lyapunov inner
product has the same downside as another model
reduction approach with ana priori stability guar-

5The A matrix whose sparsity pattern is shown in Figure
5(b) is the “PDE example” in the SLICOT model reduction
benchmark repository [41].

antee, namely balanced truncation [29; 10]: it may
not be practical to compute the matrixP defin-
ing the Lyapunov inner product for very large sys-
tems. It is worthwhile to note that computingP
(76) is less computationally intensive than reducing
a system using balanced truncation, which requires
the solution oftwo Lyapunov equations for the so-
called observability and reachability Gramiansand
the factorizations of these Gramians [29; 10] (see
Appendix A.2). The computational cost of calcu-
lating the weighting matrix that defines the Lya-
punov inner product relative to the computational
cost of reducing a system using balanced trunca-
tion is studied numerically in Section 5.2. Note that
it can be shown that the balanced truncation algo-
rithm may be viewed as a projection algorithm in a
special Lyapunov inner product [24]. A proof un-
covering this connection is given in Appendix A.3.

As observed earlier for the symmetry inner prod-
uct, it is clear from (79) that the Galerkin projection
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Figure 5: Sparsity structure of representativeP matrix for a given sparseA matrix compared to sparsity structure of representative
W matrix

of the system (74) in the Lyapunov inner product
(77) can be viewed as a Petrov-Galerkin projection
of this system in the regularL2 inner product, with
the reduced test basis given byΨΨΨM = PΦΦΦM, where
ΦΦΦM is the reduced trial basis.

5.2. Numerical experiments

The stability-preserving model reduction approach
based on discrete projection presented in Section
5.1 is now evaluated on a problem involving a
model of an electrostatically actuated beam. For
this example, the error in the ROM output relative
to the full order model output, defined by

E
o
rel =

∑Kmax
i=1 |yQN(ti)−yQM(ti)|

∑Kmax
i=1 |yQN(ti)|

, (81)

is computed and reported. Here the symbolKmax

denotes the integer such thatTmax = Kmaxdtsnap,
whereTmax is the maximum time until which the
ROM is run. The notation| · | in (81) denotes the
absolute value, which evaluates to a scalar for the
numerical example considered, as it has one output
(Q = 1).

5.2.1. Electrostatically actuated beam example

The numerical example considered is that of an
electrostatically actuated beam. One application
for this model is analysis of microelectromechan-
ical systems (MEMS) devices, such as electrome-
chanical radio frequency (RF) filters [44]. Given a

simple enough shape, these devices can be mod-
eled as 1D beams embedded in two or three di-
mensional space. It is assumed that the beam de-
flection is small, so that geometric nonlinearities
can be neglected. The resulting linear PDEs are
discretized using the finite element method follow-
ing the approach presented in [45; 44] to yield a
ROM LTI system of the form (4). The matrices
A andB in (4) are downloaded from the Oberwol-
fach model reduction benchmark collection [46].
These global matrices are then disassembled into
their local counterparts, and reassembled to yield a
discretization of any desired size. In the full order
model for which results are reported here, the FOM
hasN = 10,000 degrees of freedom. It is verified
that the full order system is stable: the maximum
real part of the eigenvalues ofA is−0.0016.

To generate the snapshots from which POD bases
are constructed, the full order model (4) is solved
using a backward Euler time integration scheme
with an initial condition ofxN(0) = 0 and an in-
put corresponding to a periodic on/off switching,
i.e.,

uP(t) =







0.005< t < 0.01,0.015< t < 0.02,
1, 0.03< t < 0.035,
0, otherwise

(82)
A total of Kmax= 1000 snapshots are collected, ev-
ery dtsnap= 5×10−5 seconds, until timet = 0.05
seconds. From these snapshots, 5, 10, 20 and 30
mode ROMs are constructed using POD in theL2

inner product, and POD in the Lyapunov inner
product. In solving the Lyapunov equation (76)
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for the Lyapunov inner product weighting matrix
P, the matrixQ is taken to be theN×N identity
matrix. The system (4) is reduced also using bal-
anced truncation.

The first step is to study the stability of each ROM.
Table 1 reports the maximum real part of the ROM
system matricesAM for eachM considered. It is
found that theL2 ROM is unstable for eachM, and
becomes more unstable with increasingM. In con-
trast, the balanced truncation and POD Lyapunov
inner product ROMs are stable for allM consid-
ered, as expected.

Next, the accuracy of each ROM is examined. Ta-
ble 2 summarizes the errors (81) in the ROM so-
lutions relative to the full order model solution for
three runs of different lengths. An entry of ‘−’ in
the table indicates that the error overflowed due to
an instability in the ROM.

The objective of the first run (Kmax = 1000) is
to study how well the POD ROMs can reproduce
the snapshots from which they were constructed,
and to compare these ROMs’ performance with the
performance of ROMs constructed using balanced
truncation. The reader can observe that the POD
ROM constructed in the Lyapunov inner product is
the most accurate. The PODL2 ROM is both un-
stable as well as inaccurate (Figure 6(a)).

The second two runs (Kmax = 2000 andKmax =
5000) are aimed to study the predictive capabili-
ties of the ROMs for long-time simulations. The
full order model is run until times 0.1 and 2.5 sec-
onds respectively. As before, only snapshots up
to time t = 0.05 seconds are used to construct the
POD bases for the ROMs. In addition to the signal
(82), the following inputs are applied in both the
full order model and the ROM:

uP(t) =































0.055< t < 0.06,0.065< t < 0.07,
0.08< t < 0.085,0.105< t < 0.11,
0.115< t < 0.12,0.13< t < 0.135,
0.205< t < 0.21,0.215< t < 0.22,

1, 0.23< t < 0.235,
0, otherwise.

(83)
The reader may observe by examining Table 2 and
Figure 6 that the balanced truncation ROMs are in

general the most accurate. The POD ROMs con-
structed in the Lyapunov inner product nonetheless
produce reasonable results (Figures 6(b)-(c)) and
appear to be converging to the full order model so-
lution with M-refinement (Table 2). The PODL2

ROM result is not shown in Figures 6(b)-(c), as the
solution produced by this ROM blows up around
time t = 0.02 seconds.

Lastly, the level of computational resources re-
quired for computing the Lyapunov inner product
and the level of computational resources required
for performing model reduction via balanced trun-
cation [29; 10] are compared. Table 3 gives the
CPU times for the sum of the following operations
in the balanced truncation [29; 10] algorithm as a
function ofN, the problem size: calculation of the
observability Gramian, calculation of the control-
lability Gramian, and calculation of the balancing
transformation (Appendix A.2). All computations
are performed in serial using MATLAB’s linear al-
gebra capabilities and MATLAB’s control toolbox
[43], on a Linux workstation with 6 Intel Xeon 2.93
GHz CPUs. Both methods exhibitO(N3) scaling.
Although the Lyapunov inner product computation
is costly, as it requires the solution of a Lyapunov
equation, it completes in 2-3 times less CPU time
than the balanced truncation algorithm. This is be-
cause balanced truncation requires the solution of
two Lyapunov equations for the observability and
reachability Gramians, as well as the Cholesky and
eigenvalue factorizations of these Gramians.

6. Summary and conclusions

The energy-stability preserving model reduction
approach developed specifically for the equations
of linearized compressible inviscid flow in [6; 7]
is generalized: for ROMs constructed using the
continuous projection approach, it is shown that
a transformation of a generic PDE system of the
hyperbolic or incompletely parabolic type leads to
a stable formulation of the Galerkin ROM for this
system. It is then shown that, for many linear PDE
systems, the said transformation is induced by a
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Table 1: Maximum real part of eigenvalues of ROM system matrix AM for electrostatically actuated beam problem as a function
of basis sizeM

Basis Size (M) Balanced Truncation PODL2 POD LyapunovP

5 −2.97×10−6 4.51×101 −3.15×101

10 −3.95×10−6 1.39×102 −1.89×101

20 −2.78×10−6 1.68×103 −7.48
30 −3.22×10−6 3.40×103 −4.37

Table 2: Relative errors (81)E o
rel in ROM output for electrostatically actuated beam problem

M
Kmax Method 5 10 20 30

1000
BT 6.29×10−2 4.51×10−3 6.93×10−5 3.60×10−6

PODL2 8.56×10−1 6.62 − −
POD LyapunovP 2.05×10−3 6.23×10−5 2.09×10−8 1.35×10−8

2000
BT 5.84×10−2 4.47×10−3 6.29×10−5 3.17×10−6

PODL2 7.76 4.26×103 − −
POD LyapunovP 3.62×10−2 1.12×10−2 3.47×10−4 4.13×10−5

5000
BT 7.36×10−2 4.77×10−3 5.48×10−5 2.77×10−6

PODL2 4.40×103 − − −
POD LyapunovP 1.80×10−1 1.09×10−1 2.03×10−2 6.09×10−3

Table 3: CPU Times (in seconds) for balanced truncation vs. Lyapunov inner product computations
N

Method 1250 2500 5000 10,000

Lyapunov Inner Product 5.08×101 4.60×102 4.02×103 6.09×104

Balanced Truncation 1.09×102 1.10×103 1.04×104 1.24×105

special inner product, referred to as the “symme-
try inner product”. If the Galerkin projection step
of the model reduction procedure is performed in
this inner product, the resulting ROM is guaran-
teed to satisfy certain stability bounds regardless
of the reduced basis employed. It is demonstrated
that a discrete counterpart of the symmetry inner
product is the weightedL2 inner product obtained
by solving a Lyapunov equation, derived in [24] by
Rowley et al. For completeness, this inner prod-
uct, referred to as the “Lyapunov inner product”,
is re-derived herein, and it is shown using the en-
ergy method that this inner product gives rise to
stable ROMs constructed via discrete projection.
The performance of POD ROMs constructed us-
ing the symmetry and Lyapunov inner products are
assessed on several numerical examples for which
POD ROMs constructed in theL2 inner product

manifest instabilities.

The key properties of the symmetry inner product
and Lyapunov inner product are summarized in Ta-
ble 4. Both inner products are weightedL2 inner
products and have the same origin: they are in-
duced by the Lyapunov function for the governing
system of equations. The symmetry inner product
is a continuous inner product derived for a spe-
cific PDE system of the form (27). Projection in
this inner product requires access to the governing
PDEs, which gives rise to a projection algorithm
that is embedded. The Lyapunov inner product is
discrete, on the other hand, and operates on an LTI
system of the form (4) arising from the discretiza-
tion of a PDE of the form (1) in space using some
numerical scheme, e.g., the finite element method.
Projection in the Lyapunov inner product is there-
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Figure 6:yQM(t) for M = 10 ROMs (FOM = full order model) for electrostatically actuated beam problem

fore a black-box algorithm, as only theA, B andC
matrices in (4) are needed; in particular, access to
the governing equations isnot required. The sym-
metric positive definite matrix that defines the Lya-
punov inner product can also be computed numeri-
cally in a black-box fashion by solving a Lyapunov
equation. The existence of a solution to this Lya-
punov equation is certain only if the full order sys-
tem (4) is stable; hence the Lyapunov inner prod-
uct is not defined for unstable systems. In contrast,
the symmetry inner productis defined for unstable
systems. In this case, a ROM constructed in this
inner product will be energy-stable, by construc-
tion. However, it will not be time-stable, i.e., it may
produce (physical) solutions that are unbounded as
t → ∞. The discussion above may lead the reader
to prefer the Lyapunov inner product to the symme-
try inner product, as the former inner product can
be computed in a black-box fashion for any stable
linear system, and can be used to build a ROM for
this system without accessing the PDEs. One of
the biggest drawbacks of the Lyapunov inner prod-

uct projection approach involves its large compu-
tational cost. To solve numerically the Lyapunov
equation that defines this inner product,O(N3) op-
erations are required. Moreover, since the matrix
that defines the Lyapunov inner product is typi-
cally dense (in contrast to the matrix defining the
symmetry inner product, which is sparse), at least
O(N2) storage is required [11]. As a result, creat-
ing ROMs using the Lyapunov inner product may
not be practical for systems of very large size. The
Lyapunov inner product may nonetheless be prefer-
able to balanced truncation, which requires the so-
lution of two Lyapunov equations, and the stor-
age of two Gramians, in addition to Cholesky and
eigenvalue factorization of these Gramians. For
large-scale unsteady problems, the symmetry inner
product combined with the continuous projection
approach is recommended by the authors, despite
its more involved implementation.

It is worthwhile to note that there exist in the
literature many efficient, low storage algorithms
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Table 4: Comparison of symmetry inner product and Lyapunov inner product
Symmetry Inner Product (49) Lyapunov Inner Product (77)

Continuous Discrete
For linear PDE system of the form For linear ODE system of the form

q̇′ +A i
∂q′

∂xi
+K i j

∂ 2q′

∂xi ∂xj
+Gq′ = f ẋN = AxN

Defined for unstable systems but
Undefined for unstable systems

time-stability of ROM is not guaranteed
Induced by Lyapunov function Induced by Lyapunov function
for the system for the system
Equation specific Black-box

Derived analytically in closed form
Computed numerically
by solving a Lyapunov equation

Sparse Dense

to compute approximate solutions to large-scale
Lyapunov equations, like the equation defining
the Lyapunov inner product, e.g., the work of Li
[58; 59], Benner [60] and Simoncini [61]. These
approximate Lyapunov solvers can be used to per-
form approximate balanced truncation model re-
duction, and can, in a similar fashion, be used to
compute an approximation of the Lyapunov inner
product. With these approximate methods, how-
ever, the theoreticala priori stability guarantee
shown herein for ROMs constructed in the Lya-
punov inner product is lost, in general. Likely,
ROMs constructed in approximate Lyapunov inner
products will in practice have better numerical sta-
bility properties than ROMs constructed in theL2

inner product. A numerical study of the perfor-
mance of such ROMs is a worthwhile future re-
search endeavor that may be the subject of future
work. It is beyond the scope of the present arti-
cle, which focuses on inner products that give rise
to Galerkin formulations with ana priori stability
guarantee.

Appendix

A.1. Gronwall’s Lemma

Gronwall’s lemma (also known as Gronwall’s in-
equality) allows one to bound a function that is

known to satisfy a certain differential or integral
inequality by the solution of the corresponding dif-
ferential or integral equation [54]. The differential
form of this inequality is used herein:

ẋ(t) ≤ β (t)x(t) ⇒ x(T) ≤ x(0)e
∫ T

0 β(s)ds (84)

for β ∈ L2, t ≥ 0, 0≤ T ≤ t.

A.2. Balanced truncation algorithm for model re-
duction

The balanced truncation algorithm, first introduced
by Moore [29], assumes a semi-discrete full order
model of the form (4). The linear system (4) is
first transformed into a balanced form that isolates
observable and reachable (or controllable) modes.
This is achieved by simultaneously diagonalizing
the reachability (or controllability) and observabil-
ity Gramians. The reachability (or controllability)
Gramian (Chapter 30 of [17])

P≡
∫ ∞

0
eAtBBTeAT tdt, (85)

is the unique symmetric (at least) positive semi-
definite solution of the Lyapunov equation

AP+PAT +BBT = 0. (86)

The observability Gramian (Chapter 30 of [17])

Q ≡

∫ ∞

0
eAT tCTCeAtdt, (87)
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is the unique symmetric (at least) positive semi-
definite solution of the Lyapunov equation

ATQ+QA +CTC = 0. (88)

It will be assumed herein that the matrixA defin-
ing the full order system (4) is stable, i.e., it has no
eigenvalues with a positive real part. It will also be
assumed(A,C) is observable and(A,B) is reach-
able (controllable). If this is true, the Lyapunov
equations (86) and (88) will have positive definite
solutionsP andQ respectively (Chapter 6 of [18]).
For a discussion of balanced truncation applied to
unstable systems, the reader is referred to [22].

The balanced truncation algorithm is summarized
below for the specific case of real system matrices6

A, B andC. First, the reachability GramianP is
obtained by solving the Lyapunov equation (86).
Next, the observability GramianQ is obtained by
solving the Lyapunov equation (88). The Cholesky
factorization ofP is computed,

P = UUT . (89)

followed by an eigenvalue decomposition of
UTQU:

UTQU = KΣΣΣ2KT . (90)

The balancing transformation matrices:

Tbal = ΣΣΣ1/2KTU−1, T−1
bal = UKΣΣΣ−1/2, (91)

can now be computed7, where the entries ofΣΣΣ
are in decreasing order. The change of variables
x̃N(t) = TbalxN(t) is applied to the full-order LTI
system (4) to yield:

˙̃xN(t) = TbalAT−1
balx̃N(t)+TbalBuP(t),

yQN(t) = CT−1
balx̃N(t).

(92)

6In the case these matrices are complex, the transpose op-
erationT in the algorithm (and all analysis of this algorithm)
should be replaced with a Hermitian transposeH .

7In practice, the transformation matrices (91) are typically
computed asTbal = VTZT , andT−1

bal = UW, whereZ is the
Cholesky factor of the observability Gramian (Q = ZZT ), and
W is the left singular vector ofUTZ (UTZ = WΣΣΣVT ). This is
due to numerical stability issues that could arise in computing
ΣΣΣ−1/2 in (91).

Next, the matrices̃A ≡ TbalAT−1
bal, B̃ ≡ TbalB, C̃ ≡

CT−1
bal are partitioned as follows:

Ã =

(

Ã11 Ã12

Ã21 Ã22

)

, B̃ =

(

B̃1

B̃2

)

,

C̃ =
(

C̃1 C̃2
)

.

(93)

Here, the blocks with subscript 1 correspond to the
most observable and reachable states, and blocks
with subscript 2 correspond to the least observable
and reachable states. Finally, the reduced system
for a ROM of sizeM is given by:

ẋM(t) = AMxM(t)+BMuP(t),
yQM(t) = CMxM(t),

(94)

whereAM = Ã11, BM = B̃1, CM = C̃1. The left and
right reduced bases are given respectively by:

ΨΨΨM = TT
bal(:,1 : M), ΦΦΦM = Sbal(:,1 : M), (95)

whereSbal ≡ T−1
bal.

In effect, balanced truncation is a method for com-
puting the test and trial basesΨΨΨM andΦΦΦM in (16).
Given the test and trial bases defined in (95), the
ROM system matrices (94) can be obtained from
the formulas (17). The entries of the diagonal ma-
trix ΣΣΣ in (91) are known as the Hankel singular val-
ues of the system (4). Assuming a ROM of sizeM
has been constructed using balanced truncation, the
following error bound on the output can be shown
[31]:

||yQN(t)−yQM(t)||2 ≤ 2
N

∑
i=M+1

σi ||uP(t)||2. (96)

Generally, balanced truncation is viewed as the
“gold standard” in model reduction. Although it
is not optimal in the sense that there may be other
ROMs with smaller error norms, the approach has
a priori error bounds that are close to the low-
est bounds achievable by any reduced order model
[23]. Unfortunately, balanced truncation becomes
computationally intractable for systems of very
large dimension (e.g., of sizeN ≥ 10,000), and
hence is not practical for many systems of physical
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interest [24]. This is due to the high computational
cost of solving the Lyapunov equations (86) and
(88) for the reachability and observability Grami-
ans (O(N3) operations). The storage requirements
of balanced truncation can be prohibitive as well.
Even efficient iterative schemes developed for large
sparse Lyapunov equations compute the solution
to (86) and (88) in dense form, and hence require
O(N2) storage [11]. Unlike POD, balanced trun-
cation delivers ROMs that preserve stability of a
stable system (4) [29], however.

Note that there exist methods for performing model
reduction via an approximate balanced trunca-
tion, namely balanced POD [23], as well as low-
storage solvers for calculating efficiently approxi-
mate solutions of large-scale Lyapunov equations
like those arising in balanced truncation [58; 59;
60; 61]. Unlike balanced truncation, these algo-
rithms, by construction,can be applied to large-
scale problems. Although these methods have been
found to exhibit better numerical stability proper-
ties than the POD/Galerkin method to model re-
duction, they lack in general the provablea priori
stability guarantee of balanced truncation.

A.3. Lyapunov inner product associated with bal-
anced truncation

In comparing the steps of the balanced truncation
algorithm with the discussion in Section 5.1, the
reader may observe some similarities. In particu-
lar, both algorithms require the solution of a Lya-
punov equation for a Gramian used to transform
and reduce the system. Here, this connection is in-
vestigated further. In particular, it is shown that
the balanced truncation algorithm (Appendix A.2)
may be viewed as a projection algorithm in a spe-
cial Lyapunov inner product.

Suppose the stable LTI system (4) has been reduced
using the balanced truncation model reduction al-
gorithm summarized in Appendix A.2. In order to
uncover the inner product associated with balanced
truncation, several transformations are required.

The first step is to substitute (91) into (95). Then,

the following expressions for the left and right
bases are obtained:

ΨΨΨT
M = Tbal(1 : M, :) = ΣΣΣ1/2(1 : M, :)KTU−1, (97)

ΦΦΦM = Sbal(:,1 : M) = UKΣΣΣ−1/2(:,1 : M). (98)

Remark that (97) and (98) satisfy the following
identity:

ΣΣΣ−1(1 : M,1 : M)ΨΨΨT
MP = ΦΦΦT

M, (99)

whereP is the reachability Gramian (89). It fol-
lows that the ROM system matrices in (94) are:

AM = ΨΨΨT
MAΦΦΦ = ΨΨΨT

MAPTΨΨΨMΣΣΣ−1(1 : M,1 : M),
(100)

BM = ΨΨΨT
MB, (101)

CM = CΦΦΦ = CPTΨΨΨMΣΣΣ−1(1 : M,1 : M). (102)

Defining

zM(t) ≡ ΣΣΣ−1/2(1 : M,1 : M)xM(t), (103)

and employing the symmetry property of the reach-
ability Gramian (P = PT), (94) becomes:

żM(t) = Ψ̂ΨΨ
T
MAPΨ̂ΨΨMzM(t)+ Ψ̂ΨΨ

T
MBuP(t),

yQM(t) = CPΨ̂ΨΨMzM(t),
(104)

where

Ψ̂ΨΨM ≡ ΨΨΨMΣΣΣ−1/2(1 : M,1 : M). (105)

It is clear that (104) defines a projection of the orig-
inal LTI system (4) in anL2 inner product weighted
by the reachability Gramian matrixP. This ma-
trix defines a true inner product in the case when
P is symmetric positive-definite, which will hold if
(A,B) is reachable (controllable)8.

A property of balanced truncation is that it pre-
serves stability when applied to stable systems [10]
(Appendix A.2). This result can be proven using
the energy method. The proof is analogous to the
proof of Theorem 5.1.1.

8Reachability (a.k.a. controllability) is a standard concept
in control theory. The author is referred to [15] for a detailed
discussion of reachability (controllability).

28



A.4. Weak and penalty method implementations of
ROM boundary conditions

Consider a linear PDE system of the form (35) in
an open bounded domainΩ with boundary∂Ω.
Assume, without loss of generality, that a transient,
Dirichlet boundary condition is imposed on∂Ω:

v′(x, t) = g(x, t), on ∂Ω, (106)

for some given, smooth function of boundary data
g(x, t). Detailed below are two ways to enforce the
boundary condition (106) in a ROM constructed
via continuous Galerkin projection.

It is often possible to prove stability of a ROM con-
structed using continuous Galerkin projection with
boundary conditions implemented using the weak
or penalty methods. For an example of how to do
this in the context of the linearized compressible
Euler equations with non-reflecting far-field and
acoustically-reflecting solid wall boundary condi-
tions, the reader is referred to [7].

A.4.1. Weak implementation of boundary condi-
tions

Projecting (35) onto thekth reduced basis mode,
φφφk for v′M, after applying the identities in (40), (43)
and (45), and integrating by parts gives:

∫

Ω φφφ T
k v̇′MdΩ = −1

2

∫

∂Ω φφφ T
k

(

AS
i +

∂KS
ji

∂xj

)

niv′MdΓ

+
∫

∂Ω φφφ T
k KS

i j
∂v′M
∂xj

nidΓ

−
∫

Ω
∂φφφT

k
∂xi

KS
i j

∂v′M
∂xj

dΩ

+1
2

∫

Ω φφφ T
k

(

∂AS
i

∂xi
+

∂ 2KS
i j

∂xi∂xj

)

v′MdΩ,

(107)
for k = 1, ...,M. A weak implementation of the
boundary condition (106) amounts to substituting
g(x, t) into v′M in the boundary integrals in (107).

Doing so yields:

∫

Ω φφφT
k v̇′MdΩ = −1

2

∫

∂Ω φφφT
k

(

AS
i +

∂KS
ji

∂xj

)

nigdΓ

+
∫

∂Ω φφφ T
k KS

i j
∂g
∂xj

nidΓ

−
∫

Ω
∂φφφT

k
∂xi

KS
i j

∂v′M
∂xj

dΩ

+1
2

∫

Ω φφφ T
k

(

∂AS
i

∂xi
+

∂ 2KS
i j

∂xi ∂xj

)

v′MdΩ,

(108)
for k = 1, ...M. Next, the modal decomposition
v′M = ∑M

i=1 v′M,iφφφ i is substituted into (108). For a
linear system of PDEs like that considered here,
(108) will give rise to a ROM dynamical system
of the form

v̇M = AMvM +FM. (109)

The implementation of the boundary condition
(108) is called a “weak implementation” because
v′M will only satisfy the boundary condition (106)
in a weak sense. The weak implementation of
other boundary conditions (e.g., a Neumann and/or
Robin boundary condition) is similar to the pro-
cedure described above for the Dirichlet boundary
condition.

A.4.2. Penalty method implementation of boundary
conditions

The boundary condition (106) can also be imple-
mented using a penalty method. To do this, the
following boundary term is added to the right hand
side of (107):

τ
∫

∂Ω
φφφ T

k

(

v′M −g
)

dΓ, (110)

for each modeφφφ k with k = 1, ...,M. In (110), the
parameterτ ∈ R is a user-specified penalty param-
eter that controls the strength of the enforcement
of (106) on∂Ω. The idea is, asτ → ∞, v′M → g on
∂Ω. Equation (107) together with equation (110)
yields a system of the form (109). Since, with
the penalty method implementation of the bound-
ary condition,v′M will only equal g on ∂Ω in a
weak sense, the penalty method implementation of
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a boundary condition is also a weak implementa-
tion. The implementation of other boundary condi-
tions, e.g., a Neumann and/or Robin boundary con-
dition, via the penalty method is analogous to the
procedure for the Dirichlet boundary condition.

A.5. Linearized compressible Navier-Stokes system
matrices

If the fluid vector is given by qT =
(

u1, u2, u3, T, ρ
)

, where T and ρ
denote the fluid temperature and density respec-
tively, the matrices that appear in (27) are given
by the expressions found in [8], repeated below to
keep this article self-contained.

A1 ≡













ū1 0 0 R RT̄
ρ̄

0 ū1 0 0 0
0 0 ū1 0 0

T̄(γ −1) 0 0 ū1 0
ρ̄ 0 0 0 ū1













,

A2 ≡













ū2 0 0 0 0
0 ū2 0 R RT̄

ρ̄
0 0 ū2 0 0
0 T̄(γ −1) 0 ū2 0
0 ρ̄ 0 0 ū2













,

A3 ≡













ū3 0 0 0 0
0 ū3 0 0 0
0 0 ū3 R RT̄

ρ̄
0 0 T̄(γ −1) ū3 0
0 0 ρ̄ 0 ū3













,

(111)

G =





















∂ ū1
∂ x

∂ ū1
∂ y

∂ ū1
∂ z

R
ρ̄

∂ ρ̄
∂ x

1
ρ̄

(

ū ·∇ū1 +R∂ T̄
∂ x

)

∂ ū2
∂ x

∂ ū2
∂ y

∂ ū2
∂ z

R
ρ̄

∂ ρ̄
∂ y

1
ρ̄

(

ū ·∇ū2 +R∂ T̄
∂ y

)

∂ ū3
∂ x

∂ ū3
∂ y

∂ ū3
∂ z

R
ρ̄

∂ ρ̄
∂ z

1
ρ̄

(

ū ·∇ū3 +R∂ T̄
∂ z

)

∂ T̄
∂ x

∂ T̄
∂ y

∂ T̄
∂ z (γ −1)∇ · ū 1

ρ̄ (ū ·∇T̄ +(γ −1)T̄∇ · ū)
∂ ρ̄
∂ x

∂ ρ̄
∂ y

∂ ρ̄
∂ z 0 ∇ · ū





















,

(112)

and

K11≡
1

ρ̄Re













2µ + λ 0 0 0 0
0 µ 0 0 0
0 0 µ 0 0
0 0 0 γκ

Pr 0
0 0 0 0 0













, (113)

K12 ≡
1

ρ̄Re













0 λ 0 0 0
µ 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













, (114)

K13 ≡
1

ρ̄Re













0 0 λ 0 0
0 0 0 0 0
µ 0 0 0 0
0 0 0 0 0
0 0 0 0 0













, (115)

K21 ≡
1

ρ̄Re













0 µ 0 0 0
λ 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













, (116)

K22 ≡
1

ρ̄Re













µ 0 0 0 0
0 2µ + λ 0 0 0
0 0 µ 0 0
0 0 0 γκ

Pr 0
0 0 0 0 0













, (117)

K23 ≡
1

ρ̄Re













0 0 0 0 0
0 0 λ 0 0
0 µ 0 0 0
0 0 0 0 0
0 0 0 0 0













, (118)

K31 ≡
1

ρ̄Re

















0 0 µ 0 0
0 0 0 0 0
λ 0 0 0 0
0 0 0 0 0

0 0 0 0 0

















, (119)

K33 ≡
1

ρ̄Re













µ 0 0 0 0
0 µ 0 0 0
0 0 2µ + λ 0 0
0 0 0 γκ

Pr 0
0 0 0 0 0













. (120)

The parameters appearing in the viscous stress ma-
trices K i j are: the Lamé viscosity coefficientsλ
andµ , the thermal diffusivityκ , the Prandtl num-
berPr, and the Reynolds numberRe.
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